
Spain

Blog Post
Author: Werner Donné

Asynchronous 

User Interfaces

We have reactive technology for clients and servers, where basically 
data flows in only one direction. The “happy path” is efficient, while the 
unhappy one doesn’t have to be, because it occurs less frequently. We 
pride ourselves that we can do all of that asynchronously and in a non-
blocking way. This maximises resource usage, because nothing has to 
wait so there is a lot less idle time. We stay clear of request/response 
scenarios, since that implies waiting.

NASA Cassini mission

There is, however, one kind of resource we seem to forget too often and 
that is the human resource, one of the most expensive kinds. Most 
applications are still completely synchronous. You perform an action for 
which a remote service is addressed and then you have to wait for the 
result. As developers, we need to provide super short latencies in order 
to satisfy the impatient user. Even services that work completely 
asynchronously need to expose some fake synchronous API, because 
user interfaces expect that.

However, we can apply the same reactive principles to the user 
experience. Requests and responses will have to be decoupled. When 
sending a request to a service the response will be merely the 
confirmation it has been received well. Actual processing occurs at 
some later point, but will be immediate in most cases. The response is 
pushed to the client when it is available. In the meantime the user just 
continues to work. This scenario assumes the “happy path” is the most 
likely outcome. It is certainly the case for the underlying technology. Is 
there a reason to assume otherwise for the user? Or would they make 
mistakes all the time?



In the vast majority of cases there is no reason to wait for the 
outcome of a request, because it is very likely to be fine. In 
order for the user to feel confident about this there needs to 
be a very discrete feedback mechanism. It could be 
something like a traffic light. When the dot is green 
everything is in order. When there are pending requests it is 
orange. When the orange dot flashes something is taking 
longer than expected and when there is a problem it is red. 
Clicking on the dot would reveal the list of pending requests 
or errors. Clicking through on an error, in turn, would bring 
the user back to the user interface context where the data 
was entered. As a consequence, requests and the context in 
which they occur should always be correlated.

Imagine how this would work for intensive data entry. Users 
could enter data in forms and submit them without looking, 
as in the good old mainframe days. The latency of a 
roundtrip becomes less critical, because the user expects 
everything to succeed or to be notified a bit later when it 
doesn’t. This resembles how we work in real life. When you 
have a list of task to do for which some kind of feedback is 
need, then you don’t wait for the feedback of one task 
before starting with the next.

There are a few technical constraints to make this work. An 
HTTP POST will always return status code 202 (Accepted), 
which means the request has been received well, but will be 
processed later. It is important that a request is always 
stored durably in some messaging system before being 
processed. You don’t want to lose the user’s work. So the 
status code 202 acknowledges that fact.

We also need a mechanism to push responses back to the 
client. Here Server-Sent Events are an interesting option. In a 
reactive client this doesn’t require a lot of change. The 
messages sent by services can be dispatched internally in 
the same way the response of an Ajax-call would be.

https://www.w3.org/TR/eventsource/


Websockets are an alternative, because they provide two-way 
communication where sending and receiving are decoupled. 
However, in my opinion Server-Sent Events are a better 
match, because requests and responses are also physically 
decoupled. For services that wish to push messages this is 
easier. The push channel can be something completely 
different than the connection management needed for 
accepting requests. With websockets you need a reliable long 
lasting connection from the Internet down to the actual 
process that deals with the communication. This may involve 
API gateways, load-balancers, etc. It is often a challenge. An 
additional advantage of Server-Sent Events is that requests 
can be issued over plain old HTTP.

Another technical challenge is state management in the 
client. When the user is entering data for a part of a larger 
entity, that entity may be updated through the response 
channel, either because of a previous command or changes 
coming from another user. When this happens the data store 
in the client shouldn’t be simply replaced, otherwise the user 
might lose work. Instead the part the user is changing should 
be merged with the incoming data. When there are conflicts 
this should be shown clearly.

This touches on the broader problem of concurrency control. 
Often the last save wins method is employed, but this is not 
very user-friendly. There are two ways to improve this. If the 
data can be easily merged, all changes can happen 
concurrently without loss of someone’s data. When there are 
conflicts they should be shown right in the part of the UI 
corresponds to it. The other option is to provide some check-
out mechanism where a piece of data is reserved for a user. 
Merging and conflict resolution provide the most fluid user 
experience. It also goes well with an event driven design, 
because then changes could come from anywhere, not only 
from other users.

So we don’t just need non-blocking calls at the technical 
level. We also need a non-blocking user experience. This 
implies a different approach for developers, but also a re-
education of the users, so they no longer think in terms of 
requests and immediate responses.

https://www.websocket.org/

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3

